Title:
HDAC5 and NPAS4 regulate cocaine reward-environment associations

Author:
Makoto Taniguchi¹, Maria B. Carreira²,³, Yonatan A. Cooper⁴, Daniel Guzman⁷, Evan A. Balmuth², Jaswinder Kumar²,³, Laura N. Smith²,⁹, Nobuya Koike⁵,⁸, Joseph S. Takahashi³,⁵,⁶, Tae-Kyung Kim⁵, David W. Self⁷, Yingxi Lin⁴, Christopher W. Cowan¹,²,³§

Affiliation:
¹Departments of Neuroscience and Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA
²Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
³Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
⁴Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁵Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
⁶Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
⁷Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
⁸Current address: Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
⁹Current address: Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX 77807, USA

Abstract:
Cues associated with illicit drug use often develop into long-lasting triggers for drug seeking behaviors. We show here that enhanced nuclear accumulation of histone deacetylase 5 (HDAC5) in the nucleus accumbens (NAc) reduces contextual memories associated with cocaine reward, and it reduces cue- and drug prime-induced reinstatement of drug seeking behavior in cocaine self-administration. Using an unbiased, genome-wide analysis (ChIPseq) of HDAC5 gene targets, we found that the activity-sensitive gene, Npas4, is repressed by nuclear HDAC5. Following exposure to a novel environment, Npas4 expression in the NAc is rapidly and transiently induced, and it is required in the adult NAc for the formation of cocaine reward-context associations without altering drug or natural reward sensitivity, fear-related contextual memory or anxiety-like behaviors. Together our data suggest that HDAC5 regulates the association between environmental cues associated with drug administration and cocaine reward, at least in part, through repression of Npas4 expression.