Transgenerational Effect of Smoking During Pregnancy on DNA Methylation of the Newborn

Rui Luo1, Nandini Mukherjee1, Hasan Arshad2, Hasan Arshad2,3,5, John W. Holloway2,4, Hongmei Zhang1, Wilfried J.J. Karmaus1 and Fawaz Mzayek1

1Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis; 2Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; 3The David Hide Asthma and Allergy Research Centre; 4Human Development and Health, Faculty of Medicine, University of Southampton; 5NIHR Respiratory Biomedical Research Unit, University Hospital

Background: Maternal smoking during pregnancy (MSDP) is related to adverse health outcomes in the children. MSDP-induced DNA methylation (DNA-m) alterations have been suggested to play a role in these effects. However, whether these effects remain across multiple generations is not known. We investigated the association of MSDP with DNA-m in the blood of the grandchildren across four exposure groups formed by grandmother/mother gestational smoking (yes/yes, yes/no, no/yes, and no/no), using data from the Isle of Wight study.

Methods: Mother-daughter pairs (n=750) were recruited at birth of the daughters (1989) and followed up until some daughters became pregnant and gave birth (2011-2015). DNA-m at CpG (cytosine-phosphate-guanine) sites was measured in 187 of the grandchildren using Illumina Infinium MethylationEPIC BeadChip kit (Illumina, Inc., San Diego, CA). MSDP was assessed using self-report. We compared DNA-m levels of 59 MSDP-related CpGs, known from the literature, across the four exposure groups.

Results: Grandmaternal MSDP was associated with maternal MSDP (OR = 2.6; 95% CI = 1.7, 4.2). Five CpGs were differentially methylated across the four exposure groups (cg12803068(MYO1G); cg04180046(MYO1G); cg00213123(CYP1A1); cg19089201(MYO1G), and cg05575921(AHRR), p<0.001 for all). To assess the effect of grandmother gestational smoking, grandchildren DNA-m was compared between the no/yes and yes/yes groups, stratified by the gender of the grandchild. Only three CpGs (cg12803068(p=0.07); cg04180046(p=0.07); cg05575921(p=0.06)) were differentially methylated in boys with borderline significance.

Conclusion: The results suggest a transgenerational effect of MSDP on DNA-m profile of the grandchildren.