Cocaine-mediated microglial activation involves miR-148b-IncRNA XIST-DNMT1 axis-mediated epigenetic promoter DNA methylation of an anti-inflammatory gene, PPARG

Palsamy Periyasamy¹, Guoku Hu¹, and Shilpa Buch¹

¹Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center

Background: Cocaine, one of the most commonly abused drugs, has been shown to activate microglia both in vitro and in vivo. Detailed epigenetic and molecular mechanism(s) underlying cocaine-mediated microglial activation remain poorly understood. Rationale/significance: Cocaine can modulate the levels of targeted genes through the epigenetic mechanism(s). In recent times along with DNA methylation, non-coding RNAs have also been discovered as a novel family of regulators of gene expression. Emerging evidence demonstrates that interplay between lncRNAs and DNA methylation machinery is an essential layer of epigenetic regulation. Hypothesis: In this study, we tested the hypothesis that exposure of mouse primary microglial cells (MPMs) to cocaine resulting in cellular activation involves hypermethylation of the peroxisome proliferator-activated receptor gamma (PPARG) promoter via the miR-148b-DNMT1-IncRNA XIST axis. Results: RT2 lncRNA PCR Array Mouse IncFinder was performed on cocaine-exposed MPMs that demonstrated increased expression of lncRNA XIST compared with control. qPCR analysis further validated the increased expression of lncRNA XIST in cocaine-exposed MPMs. Bioinformatics analysis, miR target validation and RNA immunoprecipitation assays suggested the possible binding of lncRNA XIST with miR-148b and DNMT1 thereby resulting in increased expression of DNMT1 in cocaine-exposed MPMs. Bisulfite sequencing of cocaine-exposed MPMs showed significant hypermethylation of PPARG gene promoter. Overexpression and gene-silencing approaches were employed to rule out the involvement of miR-148b-IncRNA XIST-DNMT1 signaling axis in PPARG-mediated proinflammatory cytokines production in the cocaine-exposed MPMs. Discussion: These findings demonstrated the role of miR-148b-IncRNA XIST-DNMT1-mediated PPARG promoter DNA methylation in cocaine-mediated microglial activation.